Algebraic Methods Cheat sheet

in this chapter you will learn about Algebraic fractions and constructing mathematical proofs Algebraic Fractions:
ractions whose numerator and denominator are algebraic expressions are called algebraic fractions

simplifying algebraic fractions

To simplify algebraic fractions you will have to cancel common factor. But sometimes, you have to factorise the expression before you cancel common factor

Example 1:

a)
$8 x^{4}-4 x^{3}+6 x$ \qquad Divide each numerator by $2 x$

$$
\begin{aligned}
& \quad 2 x \\
& =\frac{8 x^{4}}{2 x}-\frac{4 x^{3}}{2 x}+\frac{6 x}{2 x} \\
& =4 x^{3}-2 x^{2}+3
\end{aligned}
$$

b) $\frac{(x+4)(3 x-1)}{(3 x-1)}$ \qquad Cancel the common factor of ($3 x-1$)

$$
=x+4
$$

With Factorise C)

Dividing polynomials
A polynomial is a finite expression with positive whole number indices (≥ 0)
Polynomials
$3 x+5,3 x^{2} y+5 y+6,8$
Not polynomials
$-\sqrt{x}, 5 x^{-2}, \frac{4}{x}$
You can use long division to divide polynomial by ($x \pm p$), where p is a constant
Example 2: Write the polynomial $4 x^{3}+9 x^{2}-3 x-10$
in the form $(x \pm p)\left(a x^{2}+b x+c\right)$ by dividing

$4 x^{2}$	Start by dividing the first term by x, so that $4 x^{3} \div x=4 x^{2}$
$x + 2 \longdiv { 4 x ^ { 3 } + 9 x ^ { 2 } - 3 x - 1 0 }$	
$4 x^{3}+8 x^{2}$	Multiply $(x+2)$ by $4 x^{2}$ So that $4 x^{2} \times(x+2)=4 x^{3}+8 x^{2}$
$x^{2}-3 x$	
$4 x^{2}+x-5$	Subtract, So that $\left(4 x^{3}+9 x^{2}\right)-\left(4 x^{3}+8 x^{2}\right)=x^{2}$ And copy $-3 x$
$\begin{gathered} x + 2 \longdiv { 4 x ^ { 3 } + 9 x ^ { 2 } - 3 x - 1 0 } \\ \underline{4 x^{3}+8 x^{2}} \end{gathered}$	
$x^{2}-3 x$	Repeat the process till you get a remainder
$x^{2}+2 x$	If the remainder is 0 then the divisor, in this case $(x+2)$ is a factor of polynomial $4 x^{3}+9 x^{2}-3 x-10$
$-5 x-10$	
$\frac{-5 x-10}{0}$	
Hence, $4 x^{3}+9 x^{2}-3 x$	2) $\left(4 x^{2}+x-5\right)$

The factor theorem
The factor theorem is a quick way of finding simple linear factor of a polynomial
The factor theorem states that if $\mathrm{f}(x)$ is a polynomial then,

- If $\mathrm{f}(p)=0$, then $(x-p)$ is a factor of $\mathrm{f}(x)$

Example 3: $\mathrm{f}(x)=3 x^{3}-12 x^{2}+6 x-24$
a) Use factor theorem to show that $(x-4)$ is a factor of $\mathrm{f}(x)$ b) Hence, show that 4 is the only real root of the equation $\mathrm{f}(x)=0$
a)
Acco

According to the theorem
If $(x-4)$ is a factor of $3 x^{3}-12 x^{2}+6 x-24$, then $\mathrm{f}(4)$ must be equal to 0
Substitute $x=4$ in the polynomial
$f(x)=3 x^{3}-12 x^{2}+6 x-24$
$f(4)=3(4)^{3}-12(4)^{2}+6(4)-24$

$$
\begin{aligned}
& =192 \\
& =0 \\
& -4)
\end{aligned}
$$

$$
\begin{aligned}
& =192-192+24-24 \\
& =0
\end{aligned}
$$

b)
s a factor of $3 x^{3}-12 x^{2}+6 x-24$
To find the root of the equation, first you need to use long division to factorise the polynomial and equate it to 0

$$
\begin{array}{l|l}
\begin{array}{ll}
3 x^{2}+6 \\
x-4 \\
3 x^{3}-12 x^{2}+6 x-24 \\
\frac{3 x^{3}-12 x^{2}}{6 x-24} \\
\frac{6 x-24}{0} &
\end{array} & f(x)=(x-4)\left(3 x^{2}+6\right) \\
\frac{\text { Equate } f(x)=0}{} & (x-4)\left(3 x^{2}+6\right)=0
\end{array}
$$

$3 x^{2}+6$ is a quadratic equation
$\Rightarrow a=3, b=0, c=6$
And to check if the roots are real or not, you need to find discriminant i.e. $b^{2}-4 a c$ If $b^{2}-4 a c<0 \Rightarrow$ equation has no real roots
By substituting the values of a, b and c in the discriminant we get,
$-72<0$
Hence $3 x^{2}+6$ has no real roots. Therefore $f(x)$ has only one real root of $x=4$

Mathematical proof:

Key terms
Theorem
statement that has been proven
Mathematical statement (or a Conjecture) A statement that has yet to be proven

In this section you will have to prove mathematical statement (or conjecture). In simple words you will have to show that the mathematical statement is true in specified cases. You will have to use the following steps to prove a statement

Example 4: Prove that $n^{2}-n$ is an even number for all values of n.
You know the fact that ODDXEVEN $=$ EVEN.

Start by writing $n^{2}-n$ as multiple of two terms. We can do that by factorising the term as follows
$n^{2}-n=n(n-1)$
Any number is either ODD or EVEN. Now consider if n is even, then $n-1$ must be odd which implies
$n \times(n-1) \Rightarrow$ Even \times Odd $=$ Even
If $n-1$ is even then n must be odd which implies
$n \times(n-1) \Rightarrow$ Odd \times Even $=$ Even
Hence, $n^{2}-n$ is even for all values of n

Prove an Identity:

Identical statements mean they are always equal mathematically. In this section you will have to prove an identity. That is, you will have to show the right hand side of the equation equal to left hand side.

Example 5: Prove that $(x+\sqrt{y})(x-\sqrt{y}) \equiv x^{2}-y$
Start by solving one side of the identity. It will be logical to start
with $(x+\sqrt{y})(x-\sqrt{y})$ as this can be expanded.
$\begin{aligned}(x+\sqrt{y})(x-\sqrt{y}) & =x(x-\sqrt{y})+\sqrt{y}(x-\sqrt{y}) \\ = & x^{2}-x \sqrt{y}+x \sqrt{y}-(\sqrt{y} \sqrt{y}) \\ = & x^{2}-y\end{aligned}$
$a s \sqrt{y} \times \sqrt{y}=y$
$\Rightarrow(x+\sqrt{y})(x-\sqrt{y}) \equiv x^{2}-y$
Hence, we have proved the identity.

Methods of proof:

There are different methods to prove a mathematical statement. However, in this chapter you will only learn Proof by Exhaustion.

Proof by Exhaustion: In this method you will have to split your statement into smaller cases and prove each case separately. This way you will be able to prove that the statement is true.

Example 6: Prove that the sum of two consecutive square numbers between 1^{2} and 8^{2} is an odd number.

You will prove this by exhaustion. Start by listing all square numbers between 1^{2} and 8^{2} and add the consecutive square numbers to get a result,
$2^{2}+3^{2}=$ Odd, $3^{2}+4^{2}=$ odd, $4^{2}+5^{2}=$ odd, $5^{2}+6^{2}=$ odd,, $6^{2}+7^{2}=$ odd
Now you can see, each case is proved to be an odd number
So, the sum of two consecutive square numbers between 1^{2} and 8^{2} is always an odd number

Counter-example:

You can prove a mathematical statement is not true by counter-example. A counter-example is one example that does not work for the given statement. To disprove a statement one counter example is enough.

Example 7: Show, by means of a counter-example, that the following inequality does not hold when p and q are both negative

$$
p+q>\sqrt{4 p q}
$$

Start by taking negative values for both p and q
$p=-1, q=-2$
$p+q=(-1)-(-2)=-1+2=1$
$4 p q=\sqrt{4(-1)(-2)}=\sqrt{8}$
But $1<\sqrt{8}$, i.e. $p+q<\sqrt{4 p q}$
Hence by counter example, we proved the inequality is not true for negative values

